Stress-induced chloroplast degradation in Arabidopsis is regulated via a process independent of autophagy and senescence-associated vacuoles.

نویسندگان

  • Songhu Wang
  • Eduardo Blumwald
چکیده

Two well-known pathways for the degradation of chloroplast proteins are via autophagy and senescence-associated vacuoles. Here, we describe a third pathway that was activated by senescence- and abiotic stress-induced expression of Arabidopsis thaliana CV (for chloroplast vesiculation). After targeting to the chloroplast, CV destabilized the chloroplast, inducing the formation of vesicles. CV-containing vesicles carrying stromal proteins, envelope membrane proteins, and thylakoid membrane proteins were released from the chloroplasts and mobilized to the vacuole for proteolysis. Overexpression of CV caused chloroplast degradation and premature leaf senescence, whereas silencing CV delayed chloroplast turnover and senescence induced by abiotic stress. Transgenic CV-silenced plants displayed enhanced tolerance to drought, salinity, and oxidative stress. Immunoprecipitation and bimolecular fluorescence complementation assays demonstrated that CV interacted with photosystem II subunit PsbO1 in vivo through a C-terminal domain that is highly conserved in the plant kingdom. Collectively, our work indicated that CV plays a crucial role in stress-induced chloroplast disruption and mediates a third pathway for chloroplast degradation. From a biotechnological perspective, silencing of CV offers a suitable strategy for the generation of transgenic crops with increased tolerance to abiotic stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autophagy Plays a Role in Chloroplast Degradation during Senescence in Individually Darkened Leaves

Chloroplasts contain approximately 80% of total leaf nitrogen and represent a major source of recycled nitrogen during leaf senescence. While bulk degradation of the cytosol and organelles in plants is mediated by autophagy, its role in chloroplast catabolism is largely unknown. We investigated the effects of autophagy disruption on the number and size of chloroplasts during senescence. When le...

متن کامل

Blocking the Metabolism of Starch Breakdown Products in Arabidopsis Leaves Triggers Chloroplast Degradation

In most plants, a large fraction of photo-assimilated carbon is stored in the chloroplasts during the day as starch and remobilized during the subsequent night to support metabolism. Mutations blocking either starch synthesis or starch breakdown in Arabidopsis thaliana reduce plant growth. Maltose is the major product of starch breakdown exported from the chloroplast at night. The maltose exces...

متن کامل

From Arabidopsis to cereal crops: Conservation of chloroplast protein degradation by autophagy indicates its fundamental role in plant productivity

Autophagy is an evolutionarily conserved process leading to the degradation of intracellular components in eukaryotes, which is important for nutrient recycling especially in response to starvation conditions. Nutrient recycling is an essential process that underpins productivity in crop plants, such that remobilized nitrogen derived from older organs supports the formation of new organs or gra...

متن کامل

Delayed degradation of chlorophylls and photosynthetic proteins in Arabidopsis autophagy mutants during stress-induced leaf yellowing

Plant autophagy, one of the essential proteolysis systems, balances proteome and nutrient levels in cells of the whole plant. Autophagy has been studied by analysing Arabidopsis thaliana autophagy-defective atg mutants, but the relationship between autophagy and chlorophyll (Chl) breakdown during stress-induced leaf yellowing remains unclear. During natural senescence or under abiotic-stress co...

متن کامل

Partial or entire: Distinct responses of two types of chloroplast autophagy

Autophagy carries out intracellular degradation of cytoplasmic components, which is important for the removal of dysfunctional organelles and for efficient nutrient recycling in eukaryotic cells. Most proteins in plant green tissues are found in chloroplasts, mainly as photosynthetic proteins that constantly accumulate damage caused by sunlight. Our recent study investigated the involvement of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 26 12  شماره 

صفحات  -

تاریخ انتشار 2014